Wednesday, December 6, 2023
  • Login
  • TOÁN 10
    • Đề kiểm tra
    • Đề thi giữa HK1
    • Đề thi HK1
    • Đề thi giữa HK2
    • Đề thi HK2
    • Đề thi khảo sát
    • Tài liệu học tập
    • Bài tập toán 10
    • Giáo án Toán 10
    • Chuyên đề toán 10
  • TOÁN 11
    • Đề kiểm tra
    • Đề thi giữa HK1
    • Đề thi HK1
    • Đề thi giữa HK2
    • Đề thi HK2
    • Đề thi khảo sát
    • Tài liệu học tập
    • Bài tập toán 11
    • Giáo án Toán 11
    • Chuyên đề toán 11
  • TOÁN 12
    • Đề kiểm tra
    • Đề thi giữa HK1
    • Đề thi HK1
    • Đề thi giữa HK2
    • Đề thi HK2
    • Đề thi khảo sát
    • Tài liệu học tập
    • Bài tập toán 12
    • Chuyên đề toán 12
    • Giáo án Toán 12
  • TÀI LIỆU
    • Sách Giáo Khoa
    • Công Thức Toán
    • Tài Liệu Ôn Thi HSG
    • Tài liệu ôn thi ĐGNL
    • Tài Liệu Ôn Thi TN THPT
    • Tài Liệu Máy Tính Casio
  • ĐỀ THI
    • Đề ôn thi THPT
    • Đề thi HSG THPT
    • Đề thi thử TN THPT
    • Đề thi ĐGNL & ĐGTD
    • Đề Thi TN THPT Quốc Gia
  • BLOG TỔNG HỢP
    • Blog Tin Tức
    • Blog Toán học
    • Tạp chí Epsilon
    • Tài liệu ngữ văn
  • THI ONLINE
    • Thi thử TN THPT
No Result
View All Result
No Result
View All Result
Home Toán 12 Tài liệu học tập

Bài tập trắc nghiệm chuyên đề số phức – Lương Văn Huy

vted by vted
11/12/2021
in Tài liệu học tập
Reading Time: 4 mins read
0
Share on FacebookShare on TelegramShare on QR Code

Tài liệu gồm 25 trang tóm tắt lý thuyết, công thức tính toán số phức và 142 bài tập trắc nghiệm chuyên đề số phức chọn lọc. Nội dung tài liệu:

A. ĐỊNH NGHĨA VÀ CÁC PHÉP TOÁN SỐ PHỨC
1. Khái niệm số phức
Là biểu thức có dạng a + bi, trong đó a, b là những số thực và số i thoả i^2 = –1
Kí hiệu là z = a + bi với a là phần thực, b là phần ảo, i là đơn vị ảo
Tập hợp các số phức kí hiệu là C = {a + bi / a, b ∈ R và i^2 = –1}. Ta có R ⊂ C
Số phức có phần ảo bằng 0 là một số thực: z = a + 0.i = a ∈ R ⊂ C
Số phức có phần thực bằng 0 là một số ảo: z = 0.a + bi = bi. Đặc biệt i = 0 + 1.i
Số 0 = 0 + 0.i vừa là số thực vừa là số ảo
2. Số phức bằng nhau
Cho hai số phức z = a + bi và z’ = a’ + b’i . Ta có z = z ⇔ a = a’ và b = b’
3. Biểu diễn hình học của số phức
Mỗi số phức z = a + bi được xác định bởi cặp số thực (a; b)
Trên mặt phẳng Oxy, mỗi điểm M(a; b) được biểu diễn bởi một số phức và ngược lại
Mặt phẳng Oxy biểu diễn số phức được gọi là mặt phẳng phức. Gốc tọa độ O biểu diễn số 0, trục hoành Ox biểu diễn số thực, trục tung Oy biểu diễn số ảo
[ads]
4. Môđun của số phức
Số phức z = a + bi được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Độ dài của véctơ OM được gọi là môđun của số phức z
5. Số phức liên hợp
Cho số phức z = a + bi, số phức liên hợp của z là a – bi
6. Cộng, trừ số phức
Số đối của số phức z = a + bi là –z = –a – bi
Cho z = a + bi và z’ = a’ + b’i. Ta có z ± z’ = (a ± a’) + (b ± b’)i
Phép cộng số phức có các tính chất như phép cộng số thực
7. Phép nhân số phức
Cho hai số phức z = a + bi và z’ = a’ + b’i. Nhân hai số phức như nhân hai đa thức rồi thay i^2 = –1 và rút gọn, ta được: z.z’ = a.a’ – b.b’ + (a.b’ + a’.b)i
Phép nhân số phức có các tính chất như phép nhân số thực
8. Phép chia số phức
9. Lũy thừa của đơn vị ảo
B. CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI

1. Căn bậc hai của số phức
Cho số phức w, mỗi số phức z = a + bi thoả z^2 = w được gọi là căn bậc hai của w
Mỗi số phức đều có hai căn bậc hai đối nhau
(Tổng quát: Căn bậc n của số phức luôn có n giá trị)
2. Phương trình bậc hai
Phương trình bậc hai với hệ số a, b, c là số thực
Phương trình bậc hai với hệ số phức
C. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC
1. Số phức dưới dạng lượng giác
a. Acgumen của số phức z ≠ 0
Cho số phức z = a + bi ≠ 0 được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Số đo φ = (Ox, OM) (rađian) được gọi là một acgumen của z
Mọi acgumen của z sai khác nhau là k2p tức là có dạng φ + k2p (k ∈ Z) (z và nz sai khác nhau k2p với n là một số thực khác 0)
b. Dạng lượng giác của số phức z = a + bi
Dạng lượng giác của số phức z ≠ 0 là z = r(cosφ + isinφ) với φ là một acgumen của z
c. Nhân, chia số phức dưới dạng lượng giác
2. Công thức Moa–vrơ (Moivre) và ứng dụng
D. BÀI TẬP TRẮC NGHIỆM SỐ PHỨC

Tải tài liệu

Related Posts

Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng
Tài liệu học tập

Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng

02/04/2023
Một số ứng dụng hay về tỷ số thể tích trong việc giải toán trắc nghiệm
Tài liệu học tập

Một số ứng dụng hay về tỷ số thể tích trong việc giải toán trắc nghiệm

02/04/2023
138 bài toán cực trị hình học giải tích không gian Oxyz vận dụng cao
Tài liệu học tập

138 bài toán cực trị hình học giải tích không gian Oxyz vận dụng cao

02/04/2023
Chuyên đề cơ bản ứng dụng tích phân trong hình học ôn thi TN THPT môn Toán
Chuyên đề toán 12

Chuyên đề cơ bản ứng dụng tích phân trong hình học ôn thi TN THPT môn Toán

02/04/2023
Ngân hàng câu hỏi số phức: Bài toán tìm số phức – Lê Bá Bảo
Tài liệu học tập

Ngân hàng câu hỏi số phức: Bài toán tìm số phức – Lê Bá Bảo

02/04/2023
Ngân hàng câu hỏi số phức: Phương trình với hệ số thực – Lê Bá Bảo
Tài liệu học tập

Ngân hàng câu hỏi số phức: Phương trình với hệ số thực – Lê Bá Bảo

02/04/2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Tìm kiếm

No Result
View All Result

Bài Viết Mới Nhất

Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Bắc Ninh

Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bà Rịa – Vũng Tàu

Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bắc Giang

Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực – Nam Định

Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Hạ Long – Quảng Ninh

Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng

Một số ứng dụng hay về tỷ số thể tích trong việc giải toán trắc nghiệm

Bài tập vận dụng – vận dụng cao chuyên đề phương trình đường tròn

Chủ đề phương trình đường tròn Toán 10 KNTTVCS – Lê Bá Bảo

Bộ đề ôn tập giữa học kì 2 môn Toán 10 Kết Nối Tri Thức Với Cuộc Sống

Load More

About Us

VTED.net là một thư viện online nơi bạn có thể tải xuống các tài liệu, đề thi, sách... thuộc các môn học của khối lớp trung học hấp dẫn, nổi bật với các loại file pdf, word, ... miễn phí.

Recent Posts

  • Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Bắc Ninh
  • Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bà Rịa – Vũng Tàu
  • Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bắc Giang
  • Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực – Nam Định

Fanpage

Bách Khoa Tài Liệu
  • Giới Thiệu
  • Liên Hệ
  • Bản Quyền

Copyright © 2023 | Bản quyền thuộc về VTED.net

No Result
View All Result
  • TOÁN 10
    • Đề kiểm tra
    • Đề thi giữa HK1
    • Đề thi HK1
    • Đề thi giữa HK2
    • Đề thi HK2
    • Đề thi khảo sát
    • Tài liệu học tập
    • Bài tập toán 10
    • Giáo án Toán 10
    • Chuyên đề toán 10
  • TOÁN 11
    • Đề kiểm tra
    • Đề thi giữa HK1
    • Đề thi HK1
    • Đề thi giữa HK2
    • Đề thi HK2
    • Đề thi khảo sát
    • Tài liệu học tập
    • Bài tập toán 11
    • Giáo án Toán 11
    • Chuyên đề toán 11
  • TOÁN 12
    • Đề kiểm tra
    • Đề thi giữa HK1
    • Đề thi HK1
    • Đề thi giữa HK2
    • Đề thi HK2
    • Đề thi khảo sát
    • Tài liệu học tập
    • Bài tập toán 12
    • Chuyên đề toán 12
    • Giáo án Toán 12
  • TÀI LIỆU
    • Sách Giáo Khoa
    • Công Thức Toán
    • Tài Liệu Ôn Thi HSG
    • Tài liệu ôn thi ĐGNL
    • Tài Liệu Ôn Thi TN THPT
    • Tài Liệu Máy Tính Casio
  • ĐỀ THI
    • Đề ôn thi THPT
    • Đề thi HSG THPT
    • Đề thi thử TN THPT
    • Đề thi ĐGNL & ĐGTD
    • Đề Thi TN THPT Quốc Gia
  • BLOG TỔNG HỢP
    • Blog Tin Tức
    • Blog Toán học
    • Tạp chí Epsilon
    • Tài liệu ngữ văn
  • THI ONLINE
    • Thi thử TN THPT

Copyright © 2023 | Bản quyền thuộc về VTED.net

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In